Your browser doesn't support javascript.
loading
Human oral isolate Lactobacillus fermentum AGR1487 reduces intestinal barrier integrity by increasing the turnover of microtubules in Caco-2 cells.
Anderson, Rachel C; Young, Wayne; Clerens, Stefan; Cookson, Adrian L; McCann, Mark J; Armstrong, Kelly M; Roy, Nicole C.
Afiliación
  • Anderson RC; Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.
PLoS One ; 8(11): e78774, 2013.
Article en En | MEDLINE | ID: mdl-24244356
ABSTRACT
Lactobacillus fermentum is found in fermented foods and thought to be harmless. In vivo and clinical studies indicate that some L. fermentum strains have beneficial properties, particularly for gastrointestinal health. However, L. fermentum AGR1487 decreases trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity. The hypothesis was that L. fermentum AGR1487 decreases the expression of intestinal cell tight junction genes and proteins, thereby reducing barrier integrity. Transcriptomic and proteomic analyses of Caco-2 cells (model of human intestinal epithelial cells) treated with L. fermentum AGR1487 were used to obtain a global view of the effect of the bacterium on intestinal epithelial cells. Specific functional characteristics by which L. fermentum AGR1487 reduces intestinal barrier integrity were examined using confocal microscopy, cell cycle progression and adherence bioassays. The effects of TEER-enhancing L. fermentum AGR1485 were investigated for comparison. L. fermentum AGR1487 did not alter the expression of Caco-2 cell tight junction genes (compared to L. fermentum AGR1485) and tight junction proteins were not able to be detected. However, L. fermentum AGR1487 increased the expression levels of seven tubulin genes and the abundance of three microtubule-associated proteins, which have been linked to tight junction disassembly. Additionally, Caco-2 cells treated with L. fermentum AGR1487 did not have defined and uniform borders of zona occludens 2 around each cell, unlike control or AGR1485 treated cells. L. fermentum AGR1487 cells were required for the negative effect on barrier integrity (bacterial supernatant did not cause a decrease in TEER), suggesting that a physical interaction may be necessary. Increased adherence of L. fermentum AGR1487 to Caco-2 cells (compared to L. fermentum AGR1485) was likely to facilitate this cell-to-cell interaction. These findings illustrate that bacterial strains of the same species can cause contrasting host responses and suggest that food-safe status should be given to individual strains not species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Comunicación Celular / Regulación de la Expresión Génica / Uniones Estrechas / Limosilactobacillus fermentum / Mucosa Intestinal / Mucosa Bucal Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2013 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Comunicación Celular / Regulación de la Expresión Génica / Uniones Estrechas / Limosilactobacillus fermentum / Mucosa Intestinal / Mucosa Bucal Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2013 Tipo del documento: Article País de afiliación: Nueva Zelanda