Your browser doesn't support javascript.
loading
Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia.
Agarwal, Anupriya; MacKenzie, Ryan J; Pippa, Raffaella; Eide, Christopher A; Oddo, Jessica; Tyner, Jeffrey W; Sears, Rosalie; Vitek, Michael P; Odero, María D; Christensen, Dale J; Druker, Brian J.
Afiliación
  • Agarwal A; Authors' Affiliations: Knight Cancer Institute; Division of Hematology & Medical Oncology; Departments of Cell and Developmental Biology and Molecular and Medical Genetics, Oregon Health and Science University; Howard Hughes Medical Institute, Portland, Oregon; Oncotide Pharmaceuticals, Research Triangle Park; Duke University Medical Center, Durham, North Carolina; and Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
Clin Cancer Res ; 20(8): 2092-103, 2014 Apr 15.
Article en En | MEDLINE | ID: mdl-24436473
ABSTRACT

PURPOSE:

The SET oncoprotein, a potent inhibitor of the protein phosphatase 2A (PP2A), is overexpressed in leukemia. We evaluated the efficacy of SET antagonism in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cell lines, a murine leukemia model, and primary patient samples using OP449, a specific, cell-penetrating peptide that antagonizes SET's inhibition of PP2A. EXPERIMENTAL

DESIGN:

In vitro cytotoxicity and specificity of OP449 in CML and AML cell lines and primary samples were measured using proliferation, apoptosis, and clonogenic assays. Efficacy of target inhibition by OP449 was evaluated by immunoblotting and PP2A assay. In vivo antitumor efficacy of OP449 was measured in human HL-60 xenografted murine model.

RESULTS:

We observed that OP449 inhibited growth of CML cells including those from patients with blastic phase disease and patients harboring highly drug-resistant BCR-ABL1 mutations. Combined treatment with OP449 and ABL1 tyrosine kinase inhibitors was significantly more cytotoxic to K562 cells and primary CD34(+) CML cells. SET protein levels remained unchanged with OP449 treatment, but BCR-ABL1-mediated downstream signaling was significantly inhibited with the degradation of key signaling molecules such as BCR-ABL1, STAT5, and AKT. Similarly, AML cell lines and primary patient samples with various genetic lesions showed inhibition of cell growth after treatment with OP449 alone or in combination with respective kinase inhibitors. Finally, OP449 reduced the tumor burden of mice xenografted with human leukemia cells.

CONCLUSIONS:

We demonstrate a novel therapeutic paradigm of SET antagonism using OP449 in combination with tyrosine kinase inhibitors for the treatment of CML and AML.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Factores de Transcripción / Leucemia Mieloide / Resistencia a Antineoplásicos / Inhibidores de Proteínas Quinasas / Chaperonas de Histonas Tipo de estudio: Prognostic_studies Límite: Aged / Animals / Humans / Male / Middle aged Idioma: En Revista: Clin Cancer Res Asunto de la revista: NEOPLASIAS Año: 2014 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Factores de Transcripción / Leucemia Mieloide / Resistencia a Antineoplásicos / Inhibidores de Proteínas Quinasas / Chaperonas de Histonas Tipo de estudio: Prognostic_studies Límite: Aged / Animals / Humans / Male / Middle aged Idioma: En Revista: Clin Cancer Res Asunto de la revista: NEOPLASIAS Año: 2014 Tipo del documento: Article País de afiliación: España