Your browser doesn't support javascript.
loading
The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA.
Genome Biol ; 15(1): R26, 2014 Jan 29.
Article en En | MEDLINE | ID: mdl-24476532
BACKGROUND: Retention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells. RESULTS: Here we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins. CONCLUSIONS: Our findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Intrones / Proteínas de Unión al ARN / Empalme Alternativo / Ribonucleoproteínas Nucleares Heterogéneas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Intrones / Proteínas de Unión al ARN / Empalme Alternativo / Ribonucleoproteínas Nucleares Heterogéneas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genome Biol Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido