IntellEditS: intelligent learning-based editor of segmentations.
Med Image Comput Comput Assist Interv
; 16(Pt 3): 235-42, 2013.
Article
en En
| MEDLINE
| ID: mdl-24505766
Automatic segmentation techniques, despite demonstrating excellent overall accuracy, can often produce inaccuracies in local regions. As a result, correcting segmentations remains an important task that is often laborious, especially when done manually for 3D datasets. This work presents a powerful tool called Intelligent Learning-Based Editor of Segmentations (IntellEditS) that minimizes user effort and further improves segmentation accuracy. The tool partners interactive learning with an energy-minimization approach to editing. Based on interactive user input, a discriminative classifier is trained and applied to the edited 3D region to produce soft voxel labeling. The labels are integrated into a novel energy functional along with the existing segmentation and image data. Unlike the state of the art, IntellEditS is designed to correct segmentation results represented not only as masks but also as meshes. In addition, IntellEditS accepts intuitive boundary-based user interactions. The versatility and performance of IntellEditS are demonstrated on both MRI and CT datasets consisting of varied anatomical structures and resolutions.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Programas Informáticos
/
Reconocimiento de Normas Patrones Automatizadas
/
Inteligencia Artificial
/
Imagen por Resonancia Magnética
/
Interpretación de Imagen Asistida por Computador
/
Tomografía Computarizada por Rayos X
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Año:
2013
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Alemania