Your browser doesn't support javascript.
loading
Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation.
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
Afiliación
  • Piegeler T; From the Department of Anesthesiology (T.P., E.G.V.-V., D.E.S., R.D.M.), Department of Pharmacology (F.R.B., M.M., G.C., M.G.B., R.D.M.), Department of Medicine (M.G.B.), and Center for Lung and Vascular Biology (R.D.M.), University of Illinois Hospital and Health Sciences System, Chicago, Illinois; Institute of Anesthesiology (T.P.), University Hospital Zurich, Zurich, Switzerland; Institute of Physiology, Zurich Center for Integrative Human Physiology (B.B.-S.), University of Zurich; Departmen
Anesthesiology ; 120(6): 1414-28, 2014 Jun.
Article en En | MEDLINE | ID: mdl-24525631
BACKGROUND: Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. METHODS: Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. RESULTS: Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. CONCLUSIONS: Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endotelio Vascular / Factor de Necrosis Tumoral alfa / Familia-src Quinasas / Amidas / Anestésicos Locales / Lidocaína Límite: Humans Idioma: En Revista: Anesthesiology Año: 2014 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endotelio Vascular / Factor de Necrosis Tumoral alfa / Familia-src Quinasas / Amidas / Anestésicos Locales / Lidocaína Límite: Humans Idioma: En Revista: Anesthesiology Año: 2014 Tipo del documento: Article Pais de publicación: Estados Unidos