Your browser doesn't support javascript.
loading
Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach.
Peng, Huiming; Peng, Tao; Wen, Jianguo; Engler, David A; Matsunami, Risë K; Su, Jing; Zhang, Le; Chang, Chung-Che Jeff; Zhou, Xiaobo.
Afiliación
  • Peng H; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Peng T; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Wen J; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Engler DA; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Matsunami RK; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Su J; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Zhang L; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Chang CC; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
  • Zhou X; Center for Bioinformatics & Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, Department of Radiology, The Methodist Hospital Research Institute, Houston, TX 77030, USA, Department of Pathology, The Methodist Hospital Research Institute, H
Bioinformatics ; 30(13): 1899-907, 2014 Jul 01.
Article en En | MEDLINE | ID: mdl-24618474
ABSTRACT
MOTIVATION p38 mitogen-activated protein kinase activation plays an important role in resistance to chemotherapeutic cytotoxic drugs in treating multiple myeloma (MM). However, how the p38 mitogen-activated protein kinase signaling pathway is involved in drug resistance, in particular the roles that the various p38 isoforms play, remains largely unknown.

METHOD:

To explore the underlying mechanisms, we developed a novel systems biology approach by integrating liquid chromatography-mass spectrometry and reverse phase protein array data from human MM cell lines with computational pathway models in which the unknown parameters were inferred using a proposed novel algorithm called modularized factor graph.

RESULTS:

New mechanisms predicted by our models suggest that combined activation of various p38 isoforms may result in drug resistance in MM via regulating the related pathways including extracellular signal-regulated kinase (ERK) pathway and NFкB pathway. ERK pathway regulating cell growth is synergistically regulated by p38δ isoform, whereas nuclear factor kappa B (NFкB) pathway regulating cell apoptosis is synergistically regulated by p38α isoform. This finding that p38δ isoform promotes the phosphorylation of ERK1/2 in MM cells treated with bortezomib was validated by western blotting. Based on the predicted mechanisms, we further screened drug combinations in silico and found that a promising drug combination targeting ERK1/2 and NFκB might reduce the effects of drug resistance in MM cells. This study provides a framework of a systems biology approach to studying drug resistance and drug combination selection. AVAILABILITY AND IMPLEMENTATION RPPA experimental Data and Matlab source codes of modularized factor graph for parameter estimation are freely available online at http//ctsb.is.wfubmc.edu/publications/modularized-factor-graph.php.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Resistencia a Medicamentos / Proteínas Quinasas p38 Activadas por Mitógenos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Resistencia a Medicamentos / Proteínas Quinasas p38 Activadas por Mitógenos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article