Your browser doesn't support javascript.
loading
ADF/Cofilin Controls Synaptic Actin Dynamics and Regulates Synaptic Vesicle Mobilization and Exocytosis.
Wolf, Michael; Zimmermann, Anika-Maria; Görlich, Andreas; Gurniak, Christine B; Sassoè-Pognetto, Marco; Friauf, Eckhard; Witke, Walter; Rust, Marco B.
Afiliación
  • Wolf M; Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany.
  • Zimmermann AM; Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany.
  • Görlich A; Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Current address: Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
  • Gurniak CB; Institute of Genetics, University of Bonn, Bonn 53115, Germany.
  • Sassoè-Pognetto M; Department of Anatomy, Pharmacology and Forensic Medicine and National Institute of Neuroscience-Italy, University of Turin, Turin 10126, Italy.
  • Friauf E; Animal Physiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany.
  • Witke W; Institute of Genetics, University of Bonn, Bonn 53115, Germany.
  • Rust MB; Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Institute of Physiological Chemistry, University of Marburg, 35043 Marburg, Germany.
Cereb Cortex ; 25(9): 2863-75, 2015 Sep.
Article en En | MEDLINE | ID: mdl-24770705
Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sinapsis / Vesículas Sinápticas / Actinas / Transporte de Proteínas / Cofilina 1 / Destrina / Exocitosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sinapsis / Vesículas Sinápticas / Actinas / Transporte de Proteínas / Cofilina 1 / Destrina / Exocitosis Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos