Your browser doesn't support javascript.
loading
The scaffold protein muscle A-kinase anchoring protein ß orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure.
Kritzer, Michael D; Li, Jinliang; Passariello, Catherine L; Gayanilo, Marjorie; Thakur, Hrishikesh; Dayan, Joseph; Dodge-Kafka, Kimberly; Kapiloff, Michael S.
Afiliación
  • Kritzer MD; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Li J; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Passariello CL; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Gayanilo M; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Thakur H; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Dayan J; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Dodge-Kafka K; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
  • Kapiloff MS; From the Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, FL (M.D.K., J.L., C.L.P., M.G., H.T., J.D., M.S.K.); and Calhoun Center for Cardiology, Univ
Circ Heart Fail ; 7(4): 663-72, 2014 Jul.
Article en En | MEDLINE | ID: mdl-24812305
ABSTRACT

BACKGROUND:

Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPß signalosomes to pathological remodeling and heart failure in vivo remains unknown. METHODS AND

RESULTS:

Using conditional, cardiac myocyte-specific gene deletion, we now demonstrate that mAKAPß expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPß targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPß knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPß knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPß scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPß knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold.

CONCLUSIONS:

mAKAPß orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPß signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Cardiomegalia / Remodelación Ventricular / Proteínas de Anclaje a la Quinasa A / Insuficiencia Cardíaca / Miocardio Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Circ Heart Fail Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Cardiomegalia / Remodelación Ventricular / Proteínas de Anclaje a la Quinasa A / Insuficiencia Cardíaca / Miocardio Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Circ Heart Fail Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2014 Tipo del documento: Article