Your browser doesn't support javascript.
loading
Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control.
Orsborn, Amy L; Moorman, Helene G; Overduin, Simon A; Shanechi, Maryam M; Dimitrov, Dragan F; Carmena, Jose M.
Afiliación
  • Orsborn AL; UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
  • Moorman HG; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
  • Overduin SA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
  • Shanechi MM; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
  • Dimitrov DF; Department of Neurological Surgery, University of California, San Francisco, San Francisco, 94143 CA, USA.
  • Carmena JM; UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Electrical Engineering and Computer Sciences, University of Californi
Neuron ; 82(6): 1380-93, 2014 Jun 18.
Article en En | MEDLINE | ID: mdl-24945777
ABSTRACT
Neuroplasticity may play a critical role in developing robust, naturally controlled neuroprostheses. This learning, however, is sensitive to system changes such as the neural activity used for control. The ultimate utility of neuroplasticity in real-world neuroprostheses is thus unclear. Adaptive decoding methods hold promise for improving neuroprosthetic performance in nonstationary systems. Here, we explore the use of decoder adaptation to shape neuroplasticity in two scenarios relevant for real-world neuroprostheses nonstationary recordings of neural activity and changes in control context. Nonhuman primates learned to control a cursor to perform a reaching task using semistationary neural activity in two contexts with and without simultaneous arm movements. Decoder adaptation was used to improve initial performance and compensate for changes in neural recordings. We show that beneficial neuroplasticity can occur alongside decoder adaptation, yielding performance improvements, skill retention, and resistance to interference from native motor networks. These results highlight the utility of neuroplasticity for real-world neuroprostheses.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interfaz Usuario-Computador / Adaptación Fisiológica / Prótesis Neurales / Método Teach-Back / Destreza Motora / Plasticidad Neuronal Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interfaz Usuario-Computador / Adaptación Fisiológica / Prótesis Neurales / Método Teach-Back / Destreza Motora / Plasticidad Neuronal Límite: Animals Idioma: En Revista: Neuron Asunto de la revista: NEUROLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos