Your browser doesn't support javascript.
loading
Detecting millisecond-range coupling delays between brainwaves in terms of power correlations by magnetoencephalography.
Dabek, Juhani; Nikulin, Vadim V; Ilmoniemi, Risto J.
Afiliación
  • Dabek J; Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Finland. Electronic address: juhani.dabek@aalto.fi.
  • Nikulin VV; Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité - University Medicine Berlin, Germany; Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia.
  • Ilmoniemi RJ; Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Finland.
J Neurosci Methods ; 235: 10-24, 2014 Sep 30.
Article en En | MEDLINE | ID: mdl-24983131
BACKGROUND: The spatiotemporal coupling of brainwaves is commonly quantified using the amplitude or phase of signals measured by electro- or magnetoencephalography (EEG/MEG). To enhance the temporal resolution for coupling delays down to millisecond level, a new power correlation (PC) method is proposed and tested. NEW METHOD: The cross-correlations of any two brainwave powers at two locations are calculated sequentially through a measurement using the convolution theorem. For noise suppression, the cross-correlation series is moving-average filtered, preserving the millisecond resolution in the cross-correlations, but with reduced noise. The coupling delays are determined from the delays of the cross-correlation peaks. RESULTS: Simulations showed that the new method detects reliably power cross-correlations with millisecond accuracy. Moreover, in MEG measurements on three healthy volunteers, the method showed average alpha-alpha coupling delays of around 0-20 ms between the occipital areas of two hemispheres. Lower-frequency brainwaves vs. alpha waves tended to have a larger lag; higher-frequency waves vs. alpha waves showed delays with large deviations. COMPARISON WITH EXISTING METHODS: The use of signal power instead of its square root (amplitude) in the cross-correlations improves noise cancellation. Compared to signal phase, the signal power analysis time delays do not have periodic ambiguity. In addition, the novel method allows fast calculation of cross-correlations. CONCLUSIONS: The PC method conveys novel information about brainwave dynamics. The method may be extended from sensor-space to source-space analysis, and can be applied also for electroencephalography (EEG) and local field potentials (LFP).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Magnetoencefalografía / Ondas Encefálicas Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2014 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Magnetoencefalografía / Ondas Encefálicas Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2014 Tipo del documento: Article Pais de publicación: Países Bajos