Your browser doesn't support javascript.
loading
Sodium tungstate alleviates biomechanical properties of diabetic rat femur via modulation of oxidative stress.
Donmez, Baris O; Ozturk, Nihal; Sarikanat, Mehmet; Oguz, Nurettin; Sari, Ramazan; Ozdemir, Semir.
Afiliación
  • Donmez BO; Department of Nutrition and Dietetics, School of Health, Akdeniz University, 07070, Antalya, Turkey.
Gen Physiol Biophys ; 33(4): 443-52, 2014.
Article en En | MEDLINE | ID: mdl-25032510
ABSTRACT
Diabetes mellitus leads to bone disorders such as osteopenia and osteoporosis that can increase fracture risk. On the other hand, sodium tungstate is an inorganic compound which exerts anti-diabetic activity in experimental studies due to its suggested insulin-mimetic or antioxidant activity. Therefore this study was designed to investigate the effect of tungstate on bone quality in diabetic rat femurs. The rats were divided into four groups Control (C), tungstate-treated control (C+Tung), diabetes (STZ-D) and tungstate-treated diabetes (STZ-D+Tung). Diabetes mellitus was induced by single injection of streptozotocin (50 mg/kg). The treated rats received 150 mg/kg/day of sodium tungstate for 12 weeks. Sodium tungstate achieved a little (17%) but significant reduction on blood glucose levels, while it didn't recover the reduced body weights of diabetic rats. In addition, impaired bone mechanical quality was reversed, despite the unchanged mineral density. Sodium tungstate administration significantly lowered the 2-thiobarbituric acid reactive substances and restored the activity of tissue antioxidant enzymes such as glutathione peroxidase, catalase and superoxide dismutase in diabetic rats. On the other hand, glutathione levels didn't change in either case. These findings indicate that tungstate can improve the reduced mechanical quality of diabetic rat femurs due probably to reduction of reactive oxygen species and modulation of antioxidant enzymes as well as reduction in blood glucose levels.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Tungsteno / Estrés Oxidativo / Diabetes Mellitus Experimental / Fenómenos Mecánicos / Fémur Límite: Animals Idioma: En Revista: Gen Physiol Biophys Año: 2014 Tipo del documento: Article País de afiliación: Turquía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Tungsteno / Estrés Oxidativo / Diabetes Mellitus Experimental / Fenómenos Mecánicos / Fémur Límite: Animals Idioma: En Revista: Gen Physiol Biophys Año: 2014 Tipo del documento: Article País de afiliación: Turquía