Sulfenome mining in Arabidopsis thaliana.
Proc Natl Acad Sci U S A
; 111(31): 11545-50, 2014 Aug 05.
Article
en En
| MEDLINE
| ID: mdl-25049418
Reactive oxygen species (ROS) have been shown to be potent signaling molecules. Today, oxidation of cysteine residues is a well-recognized posttranslational protein modification, but the signaling processes steered by such oxidations are poorly understood. To gain insight into the cysteine thiol-dependent ROS signaling in Arabidopsis thaliana, we identified the hydrogen peroxide (H2O2)-dependent sulfenome: that is, proteins with at least one cysteine thiol oxidized to a sulfenic acid. By means of a genetic construct consisting of a fusion between the C-terminal domain of the yeast (Saccharomyces cerevisiae) AP-1-like (YAP1) transcription factor and a tandem affinity purification tag, we detected â¼ 100 sulfenylated proteins in Arabidopsis cell suspensions exposed to H2O2 stress. The in vivo YAP1-based trapping of sulfenylated proteins was validated by a targeted in vitro analysis of dehydroascorbate reductase2 (DHAR2). In DHAR2, the active site nucleophilic cysteine is regulated through a sulfenic acid-dependent switch, leading to S-glutathionylation, a protein modification that protects the protein against oxidative damage.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ácidos Sulfénicos
/
Arabidopsis
/
Metaboloma
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2014
Tipo del documento:
Article
Pais de publicación:
Estados Unidos