Your browser doesn't support javascript.
loading
An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action.
Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; DeMayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew.
Afiliación
  • Gibbs J; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Ince L; Faculty of Life Sciences, University of Manchester, Manchester, UK.
  • Matthews L; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Mei J; Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  • Bell T; Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, UK.
  • Yang N; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Saer B; Faculty of Life Sciences, University of Manchester, Manchester, UK.
  • Begley N; Faculty of Life Sciences, University of Manchester, Manchester, UK.
  • Poolman T; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Pariollaud M; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Farrow S; 1] Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK. [2] Respiratory Therapy Area, GlaxoSmithKline, Stevenage, UK.
  • DeMayo F; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA.
  • Hussell T; Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, University of Manchester, Manchester, UK.
  • Worthen GS; Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  • Ray D; Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK.
  • Loudon A; Faculty of Life Sciences, University of Manchester, Manchester, UK.
Nat Med ; 20(8): 919-26, 2014 Aug.
Article en En | MEDLINE | ID: mdl-25064128
ABSTRACT
The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Neumocócica / Streptococcus pneumoniae / Quimiocina CXCL5 / Factores de Transcripción ARNTL / Relojes Circadianos / Glucocorticoides Límite: Animals / Humans Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Neumocócica / Streptococcus pneumoniae / Quimiocina CXCL5 / Factores de Transcripción ARNTL / Relojes Circadianos / Glucocorticoides Límite: Animals / Humans Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Reino Unido