Your browser doesn't support javascript.
loading
Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation.
Takashima, Akito; Izumi, Yudai; Ikenaga, Eiji; Ohkochi, Takuo; Kotsugi, Masato; Matsushita, Tomohiro; Muro, Takayuki; Kawabata, Akio; Murakami, Tomo; Nihei, Mizuhisa; Yokoyama, Naoki.
Afiliación
  • Takashima A; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Izumi Y; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Ikenaga E; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Ohkochi T; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Kotsugi M; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Matsushita T; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Muro T; Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
  • Kawabata A; Collaborative Research Team Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
  • Murakami T; Collaborative Research Team Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
  • Nihei M; Collaborative Research Team Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
  • Yokoyama N; Collaborative Research Team Green Nanoelectronics Center (GNC), National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
IUCrJ ; 1(Pt 4): 221-7, 2014 Jul 01.
Article en En | MEDLINE | ID: mdl-25075343
ABSTRACT
The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs) achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IUCrJ Año: 2014 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IUCrJ Año: 2014 Tipo del documento: Article País de afiliación: Japón
...