Your browser doesn't support javascript.
loading
Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials.
Huber, Matthias C; Schreiber, Andreas; Wild, Wiltrud; Benz, Karin; Schiller, Stefan M.
Afiliación
  • Huber MC; Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, 79104, Germany; Institute for Macromolecular Chemistry, Univ. of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany; Faculty of Chemistry and Pharmacy, Univ. of Freiburg, Fahn
  • Schreiber A; Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, 79104, Germany; Institute for Macromolecular Chemistry, Univ. of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany; Faculty of Biology, Univ. of Freiburg, Schänzlestrasse 1,
  • Wild W; Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, 79104, Germany; Institute for Macromolecular Chemistry, Univ. of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.
  • Benz K; NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Baden-Wuerttemberg, Germany.
  • Schiller SM; Freiburg Institute for Advanced Studies (FRIAS), School of Soft Matter Research, University of Freiburg, Albertstr. 19, 79104, Germany; Institute for Macromolecular Chemistry, Univ. of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany; Faculty of Chemistry and Pharmacy, Univ. of Freiburg, Fahn
Biomaterials ; 35(31): 8767-8779, 2014 Oct.
Article en En | MEDLINE | ID: mdl-25078434
ABSTRACT
The access to defined protein-based material systems is a major challenge in bionanotechnology and regenerative medicine. Exact control over sequence composition and modification is an important requirement for the intentional design of structure and function. Herein structural- and matrix proteins provide a great potential, but their large repetitive sequences pose a major challenge in their assembly. Here we introduce an integrative "one-vector-toolbox-platform" (OVTP) approach which is fast, efficient and reliable. The OVTP allows for the assembly, multimerization, intentional arrangement and direct translation of defined molecular DNA-tecton libraries, in combination with the selective functionalization of the yielded protein-tecton libraries. The diversity of the generated tectons ranges from elastine-, resilin, silk- to epitope sequence elements. OVTP comprises the expandability of modular biohybrid-materials via the assembly of defined multi-block domain genes and genetically encoded unnatural amino acids (UAA) for site-selective chemical modification. Thus, allowing for the modular combination of the protein-tecton library components and their functional expansion with chemical libraries via UAA functional groups with bioorthogonal reactivity. OVTP enables access to multitudes of defined protein-based biohybrid-materials for self-assembled superstructures such as nanoreactors and nanobiomaterials, e.g. for approaches in biotechnology and individualized regenerative medicine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Ingeniería de Proteínas / Biblioteca de Genes / Matriz Extracelular Límite: Animals / Humans Idioma: En Revista: Biomaterials Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Ingeniería de Proteínas / Biblioteca de Genes / Matriz Extracelular Límite: Animals / Humans Idioma: En Revista: Biomaterials Año: 2014 Tipo del documento: Article