Your browser doesn't support javascript.
loading
Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers.
Katz, Michael J; Vermeer, Michael J DeVries; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T.
Afiliación
  • Katz MJ; †Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Vermeer MJ; †Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Farha OK; ‡Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States.
  • Pellin MJ; †Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Hupp JT; §Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
J Phys Chem B ; 119(24): 7162-9, 2015 Jun 18.
Article en En | MEDLINE | ID: mdl-25127076
A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I3(-)/I(-) redox shuttle and the Co(1,10-phenanthroline)3(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the influence of each modification upon the back electron transfer (ET) dynamics of the DSCs. The primary effect of the additives alone or in tandem is to increase the open-circuit voltage. A second is to alter the short-circuit current density, JSC. With dependence on the specifics of the system examined, any of a myriad of dynamics-related effects were observed to come into play, in both favorable (efficiency boosting) and unfavorable (efficiency damaging) ways. These effects include modulation of (a) charge-injection yields, (b) rates of interception of injected electrons by redox shuttles, and (c) rates of recombination of injected electrons with holes on surface-bound dyes. In turn, these influence charge-collection lengths, charge-collection yields, and onset potentials for undesired dark current. The microscopic origins of the effects appear to be related mainly to changes in driving force and/or electronic coupling for underlying component redox reactions. Perhaps surprisingly, only a minor role for modifier-induced shifts in conduction-band-edge energy was found. The combination of DSC-efficiency-relevant effects engendered by the modifiers was found to vary substantially as a function of the chemical identity of the redox shuttle employed. While types of modifiers are effective, a challenge going forward will be to construct systems in ways in which the benefits of organic and inorganic modifiers can be exploited in fully additive, or even synergistic, fashion.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos