Your browser doesn't support javascript.
loading
Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells.
Dezso, Zoltán; Oestreicher, Judith; Weaver, Amy; Santiago, Stephanie; Agoulnik, Sergei; Chow, Jesse; Oda, Yoshiya; Funahashi, Yasuhiro.
Afiliación
  • Dezso Z; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Oestreicher J; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Weaver A; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Santiago S; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Agoulnik S; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Chow J; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Oda Y; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
  • Funahashi Y; Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Eisai Inc., Andover, Massachusetts, United States of America.
PLoS One ; 9(8): e106131, 2014.
Article en En | MEDLINE | ID: mdl-25171249
ABSTRACT

OBJECTIVES:

Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a mechanistically unique inhibitor of microtubule dynamics. In this study, we investigated whether selective signal pathways were associated with eribulin activity compared to paclitaxel, which stabilizes microtubules, based on gene expression profiling of cell line panels of breast, endometrial, and ovarian cancer in vitro.

RESULTS:

We determined the sets of genes that were differentially altered between eribulin and paclitaxel treatment in breast, endometrial, and ovarian cancer cell line panels. Our unsupervised clustering analyses revealed that expression profiles of gene sets altered with treatments were correlated with the in vitro antiproliferative activities of the drugs. Several tubulin isotypes had significantly lower expression in cell lines treated with eribulin compared to paclitaxel. Pathway enrichment analyses of gene sets revealed that the common pathways altered between treatments in the 3 cancer panels were related to cytoskeleton remodeling and cell cycle regulation. The epithelial-mesenchymal transition (EMT) pathway was enriched in genes with significantly altered expression between the two drugs for breast and endometrial cancers, but not for ovarian cancer. Expression of genes from the EMT pathway correlated with eribulin sensitivity in breast cancer and with paclitaxel sensitivity in endometrial cancer. Alteration of expression profiles of EMT genes between sensitive and resistant cell lines allowed us to predict drug sensitivity for breast and endometrial cancers.

CONCLUSION:

Gene expression analysis showed that gene sets that were altered between eribulin and paclitaxel correlated with drug in vitro antiproliferative activities in breast and endometrial cancer cell line panels. Among the panels, breast cancer provided the strongest differentiation between eribulin and paclitaxel sensitivities based on gene expression. In addition, EMT genes were predictive of eribulin sensitivity in the breast and endometrial cancer panels.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Regulación Neoplásica de la Expresión Génica / Transición Epitelial-Mesenquimal / Furanos / Cetonas / Antineoplásicos Tipo de estudio: Diagnostic_studies Límite: Female / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Mama / Regulación Neoplásica de la Expresión Génica / Transición Epitelial-Mesenquimal / Furanos / Cetonas / Antineoplásicos Tipo de estudio: Diagnostic_studies Límite: Female / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos