Your browser doesn't support javascript.
loading
Sources of C2-C4 alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.
Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng.
Afiliación
  • Zhang Y; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
  • Wang X; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address: wangxm@gig.ac.cn.
  • Zhang Z; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lü S; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Huang Z; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Li L; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Chemistry and Material Sciences, Huaibei Normal University, Huaibei 235000, China.
Sci Total Environ ; 502: 236-45, 2015 Jan 01.
Article en En | MEDLINE | ID: mdl-25260169
ABSTRACT
Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos / Alquenos País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2015 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos / Alquenos País/Región como asunto: Asia Idioma: En Revista: Sci Total Environ Año: 2015 Tipo del documento: Article País de afiliación: China