Your browser doesn't support javascript.
loading
Differentially timed extracellular signals synchronize pacemaker neuron clocks.
Collins, Ben; Kaplan, Harris S; Cavey, Matthieu; Lelito, Katherine R; Bahle, Andrew H; Zhu, Zhonghua; Macara, Ann Marie; Roman, Gregg; Shafer, Orie T; Blau, Justin.
Afiliación
  • Collins B; Department of Biology, New York University, New York, New York, United States of America.
  • Kaplan HS; Department of Biology, New York University, New York, New York, United States of America.
  • Cavey M; Department of Biology, New York University, New York, New York, United States of America.
  • Lelito KR; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Bahle AH; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Zhu Z; Department of Biology, New York University, New York, New York, United States of America.
  • Macara AM; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Roman G; Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America.
  • Shafer OT; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Blau J; Department of Biology, New York University, New York, New York, United States of America; Center for Genomics & Systems Biology, New York University Abu Dhabi Institute, Abu Dhabi, United Arab Emirates; Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
PLoS Biol ; 12(9): e1001959, 2014 Sep.
Article en En | MEDLINE | ID: mdl-25268747
ABSTRACT
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Glutamato Metabotrópico / AMP Cíclico / Proteínas de Drosophila / Receptores Acoplados a Proteínas G / Drosophila melanogaster / Relojes Circadianos / Neuronas Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Receptores de Glutamato Metabotrópico / AMP Cíclico / Proteínas de Drosophila / Receptores Acoplados a Proteínas G / Drosophila melanogaster / Relojes Circadianos / Neuronas Límite: Animals Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos