Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation.
Photochem Photobiol Sci
; 13(12): 1781-7, 2014 Dec.
Article
en En
| MEDLINE
| ID: mdl-25350815
Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(ii) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285-310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (<2 mW) laser pulses (20 µs long), created by pulsing a cw laser beam with an acousto-optical modulator. We show that, whereas the RuPhen phosphorescence lifetime decreases rapidly with an increase of temperature (keeping the oxygenation level constant), the quantum yield of singlet oxygen production by RuPhen is almost identical in the temperature range of 285-310 K. For air-saturated conditions at 310 K the measured quantum yield is about 0.25. The depopulation rate constants of the RuPhen (3)MLCT (metal-to-ligand charge-transfer) state are determined in the absence and in the presence of oxygen. We determined that the excitation energy for the RuPhen (3)MLCTâd-d transition is 49 kJ mol(-1) in the 0.9% NaCl solution (pH = 6).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oxígeno
/
Fenantrolinas
/
Temperatura
/
Compuestos de Rutenio
/
Oxígeno Singlete
Idioma:
En
Revista:
Photochem Photobiol Sci
Asunto de la revista:
BIOLOGIA
/
QUIMICA
Año:
2014
Tipo del documento:
Article
Pais de publicación:
Reino Unido