Your browser doesn't support javascript.
loading
Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.
Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja.
Afiliación
  • Pinto IL; Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, Brazil.
  • Escaff D; Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Avenida Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile.
  • Harbola U; Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
  • Rosas A; Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900 João Pessoa, Brazil.
  • Lindenberg K; Department of Chemistry and Biochemistry and BioCircuits Institute, University of California San Diego, La Jolla, California 92093-0340, USA.
Article en En | MEDLINE | ID: mdl-25353775
ABSTRACT
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N → ∞ and t → ∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oscilometría / Relojes Biológicos / Procesamiento de Señales Asistido por Computador / Modelos Estadísticos / Retroalimentación / Modelos Biológicos Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Brasil
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oscilometría / Relojes Biológicos / Procesamiento de Señales Asistido por Computador / Modelos Estadísticos / Retroalimentación / Modelos Biológicos Tipo de estudio: Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Brasil