Optimization of transcription factor binding map accuracy utilizing knockout-mouse models.
Nucleic Acids Res
; 42(21): 13051-60, 2014 Dec 01.
Article
en En
| MEDLINE
| ID: mdl-25378309
Genome-wide assessment of protein-DNA interaction by chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) is a key technology for studying transcription factor (TF) localization and regulation of gene expression. Signal-to-noise-ratio and signal specificity in ChIP-seq studies depend on many variables, including antibody affinity and specificity. Thus far, efforts to improve antibody reagents for ChIP-seq experiments have focused mainly on generating higher quality antibodies. Here we introduce KOIN (knockout implemented normalization) as a novel strategy to increase signal specificity and reduce noise by using TF knockout mice as a critical control for ChIP-seq data experiments. Additionally, KOIN can identify 'hyper ChIPable regions' as another source of false-positive signals. As the use of the KOIN algorithm reduces false-positive results and thereby prevents misinterpretation of ChIP-seq data, it should be considered as the gold standard for future ChIP-seq analyses, particularly when developing ChIP-assays with novel antibody reagents.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Factores de Transcripción
/
Análisis de Secuencia de ADN
/
Inmunoprecipitación de Cromatina
/
Secuenciación de Nucleótidos de Alto Rendimiento
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Nucleic Acids Res
Año:
2014
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido