Your browser doesn't support javascript.
loading
Mixed-Effects Shape Models for Estimating Longitudinal Changes in Anatomy.
Datar, Manasi; Muralidharan, Prasanna; Kumar, Abhishek; Gouttard, Sylvain; Piven, Joseph; Gerig, Guido; Whitaker, Ross; Fletcher, P Thomas.
Afiliación
  • Datar M; Scientific Computing and Imaging Institute, University of Utah.
  • Muralidharan P; Department of Computer Science, University of Maryland.
  • Kumar A; Carolina Institute for Developmental Disabilities, University of North Carolina.
Article en En | MEDLINE | ID: mdl-25506622
In this paper, we propose a new method for longitudinal shape analysis that fits a linear mixed-effects model, while simultaneously optimizing correspondences on a set of anatomical shapes. Shape changes are modeled in a hierarchical fashion, with the global population trend as a fixed effect and individual trends as random effects. The statistical significance of the estimated trends are evaluated using specifically designed permutation tests. We also develop a permutation test based on the Hotelling T2 statistic to compare the average shapes trends between two populations. We demonstrate the benefits of our method on a synthetic example of longitudinal tori and data from a developmental neuroimaging study.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Spatiotemporal Image Anal Longitud Time Ser Image Data (2012) Año: 2012 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Spatiotemporal Image Anal Longitud Time Ser Image Data (2012) Año: 2012 Tipo del documento: Article Pais de publicación: Alemania