Your browser doesn't support javascript.
loading
Competitive evaluation of data mining algorithms for use in classification of leukocyte subtypes with Raman microspectroscopy.
Maguire, A; Vega-Carrascal, I; Bryant, J; White, L; Howe, O; Lyng, F M; Meade, A D.
Afiliación
  • Maguire A; School of Physics, Dublin Institute of Technology, Dublin, Ireland.
Analyst ; 140(7): 2473-81, 2015 Apr 07.
Article en En | MEDLINE | ID: mdl-25584436
Raman microspectroscopy has been investigated for some time for use in label-free cell sorting devices. These approaches require coupling of the Raman spectrometer to complex data mining algorithms for identification of cellular subtypes such as the leukocyte subpopulations of lymphocytes and monocytes. In this study, three distinct multivariate classification approaches, (PCA-LDA, SVMs and Random Forests) are developed and tested on their ability to classify the cellular subtype in extracted peripheral blood mononuclear cells (T-cell lymphocytes from myeloid cells), and are evaluated in terms of their respective classification performance. A strategy for optimisation of each of the classification algorithm is presented with emphasis on reduction of model complexity in each of the algorithms. The relative classification performance and performance characteristics are highlighted, overall suggesting the radial basis function SVM as a robust option for classification of leukocytes with Raman microspectroscopy.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Algoritmos / Minería de Datos / Leucocitos Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Analyst Año: 2015 Tipo del documento: Article País de afiliación: Irlanda Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría Raman / Algoritmos / Minería de Datos / Leucocitos Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Analyst Año: 2015 Tipo del documento: Article País de afiliación: Irlanda Pais de publicación: Reino Unido