Your browser doesn't support javascript.
loading
Mitochondrial Ca(2+) uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity.
Shimizu, Hirohito; Schredelseker, Johann; Huang, Jie; Lu, Kui; Naghdi, Shamim; Lu, Fei; Franklin, Sarah; Fiji, Hannah Dg; Wang, Kevin; Zhu, Huanqi; Tian, Cheng; Lin, Billy; Nakano, Haruko; Ehrlich, Amy; Nakai, Junichi; Stieg, Adam Z; Gimzewski, James K; Nakano, Atsushi; Goldhaber, Joshua I; Vondriska, Thomas M; Hajnóczky, György; Kwon, Ohyun; Chen, Jau-Nian.
Afiliación
  • Shimizu H; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Schredelseker J; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Huang J; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Lu K; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.
  • Naghdi S; MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States.
  • Lu F; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Franklin S; Department of Anesthesiology, University of California, Los Angeles, Los Angeles, United States.
  • Fiji HD; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.
  • Wang K; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Zhu H; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.
  • Tian C; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Lin B; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Nakano H; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Ehrlich A; MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States.
  • Nakai J; Brain Science Institute, Saitama University, Saitama, Japan.
  • Stieg AZ; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, United States.
  • Gimzewski JK; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.
  • Nakano A; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
  • Goldhaber JI; Cedars-Sinai Heart Institute, Los Angeles, United States.
  • Vondriska TM; Department of Anesthesiology, University of California, Los Angeles, Los Angeles, United States.
  • Hajnóczky G; MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, United States.
  • Kwon O; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States.
  • Chen JN; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States.
Elife ; 42015 Jan 15.
Article en En | MEDLINE | ID: mdl-25588501
ABSTRACT
Tightly regulated Ca(2+) homeostasis is a prerequisite for proper cardiac function. To dissect the regulatory network of cardiac Ca(2+) handling, we performed a chemical suppressor screen on zebrafish tremblor embryos, which suffer from Ca(2+) extrusion defects. Efsevin was identified based on its potent activity to restore coordinated contractions in tremblor. We show that efsevin binds to VDAC2, potentiates mitochondrial Ca(2+) uptake and accelerates the transfer of Ca(2+) from intracellular stores into mitochondria. In cardiomyocytes, efsevin restricts the temporal and spatial boundaries of Ca(2+) sparks and thereby inhibits Ca(2+) overload-induced erratic Ca(2+) waves and irregular contractions. We further show that overexpression of VDAC2 recapitulates the suppressive effect of efsevin on tremblor embryos whereas VDAC2 deficiency attenuates efsevin's rescue effect and that VDAC2 functions synergistically with MCU to suppress cardiac fibrillation in tremblor. Together, these findings demonstrate a critical modulatory role for VDAC2-dependent mitochondrial Ca(2+) uptake in the regulation of cardiac rhythmicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pez Cebra / Calcio / Proteínas de Pez Cebra / Canal Aniónico 2 Dependiente del Voltaje / Corazón / Frecuencia Cardíaca / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pez Cebra / Calcio / Proteínas de Pez Cebra / Canal Aniónico 2 Dependiente del Voltaje / Corazón / Frecuencia Cardíaca / Mitocondrias Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos