Your browser doesn't support javascript.
loading
Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog.
Fortuin, Suereta; Tomazella, Gisele G; Nagaraj, Nagarjuna; Sampson, Samantha L; Gey van Pittius, Nicolaas C; Soares, Nelson C; Wiker, Harald G; de Souza, Gustavo A; Warren, Robin M.
Afiliación
  • Fortuin S; Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa.
  • Tomazella GG; The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway.
  • Nagaraj N; Max Planck Institute for Biochemistry Munich, Germany.
  • Sampson SL; Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa.
  • Gey van Pittius NC; Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa.
  • Soares NC; Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa.
  • Wiker HG; The Gade Research Group for Infection and Immunity, Department of Clinical Science, University of Bergen Bergen, Norway.
  • de Souza GA; Norway Proteomics Core Facility, Department of Immunology, Oslo University Oslo, Norway.
  • Warren RM; Division of Molecular Biology and Human Genetics, Faculty Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University Cape Town, South Africa.
Front Microbiol ; 6: 6, 2015.
Article en En | MEDLINE | ID: mdl-25713560
ABSTRACT
Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Microbiol Año: 2015 Tipo del documento: Article País de afiliación: Sudáfrica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Microbiol Año: 2015 Tipo del documento: Article País de afiliación: Sudáfrica