Your browser doesn't support javascript.
loading
A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells.
Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S.
Afiliación
  • Cao J; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  • Arha M; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  • Sudrik C; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  • Mukherjee A; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  • Wu X; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  • Kane RS; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA kaner@rpi.edu.
Nucleic Acids Res ; 43(8): 4353-62, 2015 Apr 30.
Article en En | MEDLINE | ID: mdl-25845589
ABSTRACT
We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein-RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5' untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biosíntesis de Proteínas / Regulación de la Expresión Génica Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biosíntesis de Proteínas / Regulación de la Expresión Génica Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos