Your browser doesn't support javascript.
loading
A wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties.
Aleixandre, Manuel; Santos, Jose Pedro; Sayago, Isabel; Cabellos, Juan Mariano; Arroyo, Teresa; Horrillo, Maria Carmen.
Afiliación
  • Aleixandre M; GRIDSEN, Instituto de Tecnologías Físicas y de la Información (ITEFI-CSIC), Madrid 28006, Spain. manuel.aleixandre@gmail.com.
  • Santos JP; GRIDSEN, Instituto de Tecnologías Físicas y de la Información (ITEFI-CSIC), Madrid 28006, Spain. jp.santos@csic.es.
  • Sayago I; GRIDSEN, Instituto de Tecnologías Físicas y de la Información (ITEFI-CSIC), Madrid 28006, Spain. i.sayago@csic.es.
  • Cabellos JM; Dpto. Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Madrid 28800, Spain. juanmariano.cabelloscaballero@gmail.com.
  • Arroyo T; Dpto. Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Madrid 28800, Spain. teresa.arroyo@madrid.org.
  • Horrillo MC; GRIDSEN, Instituto de Tecnologías Físicas y de la Información (ITEFI-CSIC), Madrid 28006, Spain. carmen.horrillo.guemes@csic.es.
Sensors (Basel) ; 15(4): 8429-43, 2015 Apr 13.
Article en En | MEDLINE | ID: mdl-25871715
Two novel applications using a portable and wireless sensor system (e-nose) for the wine producing industry-The recognition and classification of musts coming from different grape ripening times and from different grape varieties-Are reported in this paper. These applications are very interesting because a lot of varieties of grapes produce musts with low and similar aromatic intensities so they are very difficult to distinguish using a sensory panel. Therefore the system could be used to monitor the ripening evolution of the different types of grapes and to assess some useful characteristics, such as the identification of the grape variety origin and to prediction of the wine quality. Ripening grade of collected samples have been also evaluated by classical analytical techniques, measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA) and Probable Grade Alcoholic (PGA). The measurements were carried out for two different harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga) and white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc) grape musts coming from the experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA) and Probabilistic Neural Networks (PNN) have been used to analyse the obtained data by e-nose. In addition, and the Canonical Correlation Analysis (CCA) method has been carried out to correlate the results obtained by both technologies.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2015 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2015 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza