Your browser doesn't support javascript.
loading
Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas.
Montenegro-Johnson, Thomas D; Stamm, Petra; Strauss, Soeren; Topham, Alexander T; Tsagris, Michail; Wood, Andrew T A; Smith, Richard S; Bassel, George W.
Afiliación
  • Montenegro-Johnson TD; School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom.
  • Stamm P; School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
  • Strauss S; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Topham AT; School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
  • Tsagris M; University of Nottingham, Division of Statistics, School of Mathematical Sciences, Nottingham NG7 2RD, United Kingdom.
  • Wood AT; University of Nottingham, Division of Statistics, School of Mathematical Sciences, Nottingham NG7 2RD, United Kingdom.
  • Smith RS; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
  • Bassel GW; School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom g.w.bassel@bham.ac.uk.
Plant Cell ; 27(4): 1018-33, 2015 Apr.
Article en En | MEDLINE | ID: mdl-25901089
ABSTRACT
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Análisis de la Célula Individual Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Análisis de la Célula Individual Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article País de afiliación: Reino Unido
...