Your browser doesn't support javascript.
loading
Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2- furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase.
Biochemistry ; 54(19): 2997-3008, 2015 May 19.
Article en En | MEDLINE | ID: mdl-25905665
ABSTRACT
A single enzyme, 4-(hydroxymethyl)-2-furancarboxaldehyde-phosphate synthase (MfnB), from the methanogen Methanocaldococcus jannaschii catalyzed at least 10 separate chemical reactions in converting two molecules of glyceraldehyde-3-P (GA-3-P) to 4-(hydroxymethyl)-2-furancarboxaldehyde-P (4-HFC-P), the first discrete intermediate in the biosynthetic pathway to the furan moiety of the coenzyme methanofuran. Here we describe the biochemical characterization of the recombinantly expressed MfnB to understand its catalytic mechanism. Site-directed mutagenesis showed that the strictly conserved residues (Asp25, Lys27, Lys85, and Asp151) around the active site are all essential for enzyme catalysis. Matrix-assisted laser desorption/ionization analysis of peptide fragments of MfnB incubated with GA-3-P followed by NaBH4 reduction and trypsin digestion identified a peptide with a mass/charge ratio of 1668.8 m/z present only in the D25N, D151N, and K155R mutants, which is consistent with Lys27 having increased by a mass of 58 m/z, indicating that Lys27 forms a Schiff base with a methylglyoxal-like intermediate. In addition, incubation of MfnB with GA-3-P in the presence of deuterated water or incubation of MfnB with C-2 deuterated GA-3-P showed essentially no deuterium incorporated into the 4-HFC-P. Combined with structural analysis and molecular docking, we predict the potential binding sites for two GA-3P molecules in the active site. On the basis of our observations, a possible catalytic mechanism of MfnB is proposed in this study. A phosphate elimination reaction and a triose phosphate isomerase-like reaction occur at the GA-3-P binding site I and II, respectively, prior to the aldol condensation between the enzyme-bound enol form of methylglyoxal and dihydroxyacetone phosphate (DHAP), after which the catalytic cycle is completed by a cyclization and two dehydration reactions assisted by several general acids/bases at the same active site.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gliceraldehído 3-Fosfato Idioma: En Revista: Biochemistry Año: 2015 Tipo del documento: Article
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Gliceraldehído 3-Fosfato Idioma: En Revista: Biochemistry Año: 2015 Tipo del documento: Article
...