Your browser doesn't support javascript.
loading
Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair.
Yu, Huimei; Su, Yijing; Shin, Jaehoon; Zhong, Chun; Guo, Junjie U; Weng, Yi-Lan; Gao, Fuying; Geschwind, Daniel H; Coppola, Giovanni; Ming, Guo-li; Song, Hongjun.
Afiliación
  • Yu H; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Su Y; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Shin J; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Zhong C; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Guo JU; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Weng YL; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Gao F; 1] Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [2] Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [3] Departme
  • Geschwind DH; 1] Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [2] Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [3] Departme
  • Coppola G; 1] Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [2] Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. [3] Departme
  • Ming GL; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Me
  • Song H; 1] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Me
Nat Neurosci ; 18(6): 836-43, 2015 Jun.
Article en En | MEDLINE | ID: mdl-25915473
ABSTRACT
Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Proteínas Proto-Oncogénicas / Transmisión Sináptica / Proteínas de Unión al ADN / Reparación del ADN / Homeostasis Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / Proteínas Proto-Oncogénicas / Transmisión Sináptica / Proteínas de Unión al ADN / Reparación del ADN / Homeostasis Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos