One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications.
Small
; 11(31): 3728-43, 2015 Aug.
Article
en En
| MEDLINE
| ID: mdl-25963844
Explorations of 1D nanostructures have led to great progress in the area of nanophotonics in the past decades. Based on either dielectric or metallic materials, a variety of 1D photonic devices have been developed, such as nanolasers, waveguides, optical switches, and routers. What's interesting is that these dielectric systems enjoy low propagation losses and usually possess active optical performance, but they have a diffraction-limited field confinement. Alternatively, metallic systems can guide light on deep subwavelength scales, but they suffer from high metallic absorption and can work as passive devices only. Thus, the idea to construct a hybrid system that combines the merits of both dielectric and metallic materials was proposed. To date, unprecedented optical properties have been achieved in various 1D hybrid systems, which manifest great potential for functional nanophotonic devices. Here, the focus is on recent advances in 1D dielectric/metallic hybrid systems, with a special emphasis on novel structure design, rational fabrication techniques, unique performance, as well as their wide application in photonic components. Gaining a better understanding of hybrid systems would benefit the design of nanophotonic components aimed at optical information processing.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Alemania