Your browser doesn't support javascript.
loading
An artificial molecular pump.
Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser.
Afiliación
  • Cheng C; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • McGonigal PR; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • Schneebeli ST; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • Li H; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • Vermeulen NA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • Ke C; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
  • Stoddart JF; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Nat Nanotechnol ; 10(6): 547-53, 2015 Jun.
Article en En | MEDLINE | ID: mdl-25984834
Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bombas Iónicas / Materiales Biomiméticos / Nanopartículas / Iones Idioma: En Revista: Nat Nanotechnol Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bombas Iónicas / Materiales Biomiméticos / Nanopartículas / Iones Idioma: En Revista: Nat Nanotechnol Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido