Your browser doesn't support javascript.
loading
Stochastic epidemic models featuring contact tracing with delays.
Ball, Frank G; Knock, Edward S; O'Neill, Philip D.
Afiliación
  • Ball FG; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. Electronic address: frank.ball@nottingham.ac.uk.
  • Knock ES; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. Electronic address: edwardknock@gmail.com.
  • O'Neill PD; School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. Electronic address: philip.oneill@nottingham.ac.uk.
Math Biosci ; 266: 23-35, 2015 Aug.
Article en En | MEDLINE | ID: mdl-26037511
This paper is concerned with a stochastic model for the spread of an SEIR (susceptible → exposed (=latent) → infective → removed) epidemic with a contact tracing scheme, in which removed individuals may name some of their infectious contacts, who are then removed if they have not been already after some tracing delay. The epidemic is analysed via an approximating, modified birth-death process, for which a type-reproduction number is derived in terms of unnamed individuals, that is shown to be infinite when the contact rate is sufficiently large. We obtain explicit results under the assumption of either constant or exponentially distributed infectious periods, including the epidemic extinction probability in the former case. Numerical illustrations show that, while the distributions of latent periods and delays have an effect on the spread of the epidemic, the assumption of whether the delays experienced by individuals infected by the same individual are of the same or independent length makes little difference.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesos Estocásticos / Trazado de Contacto / Número Básico de Reproducción / Epidemias / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Math Biosci Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesos Estocásticos / Trazado de Contacto / Número Básico de Reproducción / Epidemias / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Math Biosci Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos