Your browser doesn't support javascript.
loading
A comprehensive quantification method for eicosanoids and related compounds by using liquid chromatography/mass spectrometry with high speed continuous ionization polarity switching.
Yamada, Masaki; Kita, Yoshihiro; Kohira, Takahiro; Yoshida, Kenji; Hamano, Fumie; Tokuoka, Suzumi M; Shimizu, Takao.
Afiliación
  • Yamada M; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan.
  • Kita Y; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address: kita@m.u-tokyo.ac.jp.
  • Kohira T; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Central Blood Research Institute, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8639, Japan.
  • Yoshida K; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Hamano F; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Tokuoka SM; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Shimizu T; Department of Lipidomics, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
Article en En | MEDLINE | ID: mdl-26046978
Fatty acids and related metabolites, comprising several hundreds of molecular species, are an important target in disease metabolomics, as they are involved in various mammalian pathologies and physiologies. Selected reaction monitoring (SRM) analysis, which is capable of monitoring hundreds of compounds in a single run, has been widely used for comprehensive quantification. However, it is difficult to monitor a large number of compounds with different ionization polarity, as polarity switching requires a sub-second period per cycle in classical mass spectrometers. In the present study, we developed and evaluated a comprehensive quantification method for eicosanoids and related compounds by using LC/MS with high-speed continuous ionization polarity switching. The new method employs a fast (30ms/cycle) continuous ionization polarity switching, and differentiates 137 targets either by chromatography or by SRM transition. Polarity switching did not affect the lower limits of quantification, which ranged similarly from 0.5 to 200pg on column. Lipid extracts from mouse tissues were analyzed by this method, and 65 targets were quantitatively detected in the brain, including 6 compounds analyzed in the positive ion mode. We demonstrated that a fast continuous ionization polarity switching enables the quantification of a wide variety of lipid mediator species without compromising the sensitivity and reliability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría de Masas / Eicosanoides / Cromatografía Liquida Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Chromatogr B Analyt Technol Biomed Life Sci Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría de Masas / Eicosanoides / Cromatografía Liquida Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Chromatogr B Analyt Technol Biomed Life Sci Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Países Bajos