Your browser doesn't support javascript.
loading
Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.
Lin, Yu-Tsung; Chung, Hsien-Ching; Yang, Po-Hua; Lin, Shih-Yang; Lin, Ming-Fa.
Afiliación
  • Lin YT; Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan. sylin.1985@gmail.com mflin@mail.ncku.edu.tw.
Phys Chem Chem Phys ; 17(25): 16545-52, 2015 Jul 07.
Article en En | MEDLINE | ID: mdl-26051862
ABSTRACT
The geometric and electronic properties of passivated armchair graphene nanoribbons, enriched by strong chemical bonding between edge-carbons and various adatoms, are investigated by first-principle calculations. Adatom arrangements, bond lengths, charge distributions, and energy dispersions are dramatically changed by edge passivation. Elements with an atomic number of less than 20 are classified into three types depending on the optimal geometric structures planar and non-planar structures, the latter of which are associated with specific arrangements and stacked configurations of adatoms. Especially, the nitrogen passivated nanoribbon is the most stable one with a heptagon-pentagon structure at the edges. The low-lying band structures are drastically varied, exhibiting non-monotonous energy dispersions and adatom-dominated bands. A relationship between energy gaps and ribbon widths no longer exists, and some adatoms further induce a semiconductor-metal transition. All the main characteristics are directly reflected in the density of states, revealing dip structures, plateaus, symmetric peaks, and square-root divergent asymmetric peaks.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2015 Tipo del documento: Article