Your browser doesn't support javascript.
loading
Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model.
Colombo, Maria Cristina; Giverso, Chiara; Faggiano, Elena; Boffano, Carlo; Acerbi, Francesco; Ciarletta, Pasquale.
Afiliación
  • Colombo MC; MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
  • Giverso C; MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Fondazione CEN, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
  • Faggiano E; MOX-Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Labs-Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
  • Boffano C; Neuroradiology-Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy.
  • Acerbi F; Department of Neurosurgery-Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy.
  • Ciarletta P; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France.
PLoS One ; 10(7): e0132887, 2015.
Article en En | MEDLINE | ID: mdl-26186462
Glioblastoma multiforme (GBM) is the most aggressive and malignant among brain tumors. In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a diffuse infiltration, developing long protrusions that penetrate deeply along the fibers of the white matter. These features, combined with the underestimation of the invading GBM area by available imaging techniques, make a definitive treatment of GBM particularly difficult. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of GBM evolution in every single patient throughout his/her oncological history, in order to target therapeutic weapons in a patient-specific manner. In this work, we propose a continuous mechanical model and we perform numerical simulations of GBM invasion combining the main mechano-biological characteristics of GBM with the micro-structural information extracted from radiological images, i.e. by elaborating patient-specific Diffusion Tensor Imaging (DTI) data. The numerical simulations highlight the influence of the different biological parameters on tumor progression and they demonstrate the fundamental importance of including anisotropic and heterogeneous patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution. The results of the proposed mathematical model have the potential to provide a relevant benefit for clinicians involved in the treatment of this particularly aggressive disease and, more importantly, they might drive progress towards improving tumor control and patient's prognosis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Medicina de Precisión / Modelación Específica para el Paciente Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Medicina de Precisión / Modelación Específica para el Paciente Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos