Model Selection and Variable Aggregation of Australian Hospital Data.
Stud Health Technol Inform
; 214: 94-9, 2015.
Article
en En
| MEDLINE
| ID: mdl-26210424
BACKGROUND: Hospital administrative data commonly consist of hundreds of variables with many consisting of hundreds, if not thousands, of distinct categories, especially for disease groups. Conventional approaches to develop regression models for prediction either fail completely due to multicollinearity or sparsity issues or take too long and consume too many computer resources. METHODS: We demonstrate how regularisation and variable aggregation techniques such as Elastic Net can overcome some of these problems. Parameter estimates from univariate generalised linear models (GLM) and Elastic Net models were used to aggregate disease groups into a more manageable number and predict the probability of mortality for a given patient. RESULTS: When employed for variable aggregation and variable selection, Elastic Net models ran at least four times faster than GLMs, though producing a less discriminative model. When applied to final models for predicting hospital mortality, though, both Elastic Net and GLM models demonstrated similar predictive power and efficiently solved an otherwise complex problem. CONCLUSION: Elastic Net regularisation and variable aggregation provide an efficient mechanism for solving healthcare modelling problems.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Registro Médico Coordinado
/
Sistemas de Información en Hospital
/
Modelos Organizacionales
/
Sistemas de Apoyo a Decisiones Clínicas
/
Conjuntos de Datos como Asunto
/
Administración Hospitalaria
Tipo de estudio:
Prognostic_studies
País/Región como asunto:
Oceania
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2015
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Países Bajos