Your browser doesn't support javascript.
loading
Saturated Reconstruction of a Volume of Neocortex.
Kasthuri, Narayanan; Hayworth, Kenneth Jeffrey; Berger, Daniel Raimund; Schalek, Richard Lee; Conchello, José Angel; Knowles-Barley, Seymour; Lee, Dongil; Vázquez-Reina, Amelio; Kaynig, Verena; Jones, Thouis Raymond; Roberts, Mike; Morgan, Josh Lyskowski; Tapia, Juan Carlos; Seung, H Sebastian; Roncal, William Gray; Vogelstein, Joshua Tzvi; Burns, Randal; Sussman, Daniel Lewis; Priebe, Carey Eldin; Pfister, Hanspeter; Lichtman, Jeff William.
Afiliación
  • Kasthuri N; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA. Electronic address: bobby.kasthuri@gmail.com.
  • Hayworth KJ; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Berger DR; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Schalek RL; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Conchello JA; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Knowles-Barley S; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Lee D; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Vázquez-Reina A; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Kaynig V; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Jones TR; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Roberts M; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Morgan JL; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Tapia JC; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
  • Seung HS; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Roncal WG; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218-2128, USA.
  • Vogelstein JT; Department of Statistical Science and Neurobiology, Duke University, Durham, NC 27708, USA.
  • Burns R; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218-2128, USA.
  • Sussman DL; Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
  • Priebe CE; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218-2682, USA.
  • Pfister H; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Lichtman JW; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA. Electronic address: jeff@mcb.harvard.edu.
Cell ; 162(3): 648-61, 2015 Jul 30.
Article en En | MEDLINE | ID: mdl-26232230
We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía Electrónica de Rastreo / Neocórtex / Microtomía / Neuronas Límite: Animals Idioma: En Revista: Cell Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microscopía Electrónica de Rastreo / Neocórtex / Microtomía / Neuronas Límite: Animals Idioma: En Revista: Cell Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos