Your browser doesn't support javascript.
loading
Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers.
Spencer, Sarah J; Tamminen, Manu V; Preheim, Sarah P; Guo, Mira T; Briggs, Adrian W; Brito, Ilana L; A Weitz, David; Pitkänen, Leena K; Vigneault, Francois; Juhani Virta, Marko P; Alm, Eric J.
Afiliación
  • Spencer SJ; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Tamminen MV; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Preheim SP; Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Guo MT; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Briggs AW; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Brito IL; Department of Physics, Harvard University, Cambridge, MA, USA.
  • A Weitz D; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Pitkänen LK; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Vigneault F; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Juhani Virta MP; Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Alm EJ; AbVitro Inc., Boston, MA, USA.
ISME J ; 10(2): 427-36, 2016 Feb.
Article en En | MEDLINE | ID: mdl-26394010
ABSTRACT
Many microbial communities are characterized by high genetic diversity. 16S ribosomal RNA sequencing can determine community members, and metagenomics can determine the functional diversity, but resolving the functional role of individual cells in high throughput remains an unsolved challenge. Here, we describe epicPCR (Emulsion, Paired Isolation and Concatenation PCR), a new technique that links functional genes and phylogenetic markers in uncultured single cells, providing a throughput of hundreds of thousands of cells with costs comparable to one genomic library preparation. We demonstrate the utility of our technique in a natural environment by profiling a sulfate-reducing community in a freshwater lake, revealing both known sulfate reducers and discovering new putative sulfate reducers. Our method is adaptable to any conserved genetic trait and translates genetic associations from diverse microbial samples into a sequencing library that answers targeted ecological questions. Potential applications include identifying functional community members, tracing horizontal gene transfer networks and mapping ecological interactions between microbial cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Bacterias / Lagos / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Evaluation_studies Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Bacterias / Lagos / Secuenciación de Nucleótidos de Alto Rendimiento Tipo de estudio: Evaluation_studies Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos