Your browser doesn't support javascript.
loading
Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells.
Chuang, Shu-Chun; Chen, Chung-Hwan; Fu, Yin-Chin; Tai, I-Chun; Li, Ching-Ju; Chang, Li-Fu; Ho, Mei-Ling; Chang, Je-Ken.
Afiliación
  • Chuang SC; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
  • Chen CH; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung
  • Fu YC; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung
  • Tai IC; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
  • Li CJ; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
  • Chang LF; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
  • Ho ML; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Depa
  • Chang JK; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung
Biochem Pharmacol ; 98(3): 453-64, 2015 Dec 01.
Article en En | MEDLINE | ID: mdl-26410676
ABSTRACT
Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 µM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de la Médula Ósea / Simvastatina / Receptor alfa de Estrógeno / Estradiol / Células Madre Mesenquimatosas Límite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Año: 2015 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de la Médula Ósea / Simvastatina / Receptor alfa de Estrógeno / Estradiol / Células Madre Mesenquimatosas Límite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Año: 2015 Tipo del documento: Article País de afiliación: Taiwán