Your browser doesn't support javascript.
loading
CO2 Chemistry of Phenolate-Based Ionic Liquids.
Lee, Tae Bum; Oh, Seungmin; Gohndrone, Thomas R; Morales-Collazo, Oscar; Seo, Samuel; Brennecke, Joan F; Schneider, William F.
Afiliación
  • Lee TB; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Oh S; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Gohndrone TR; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Morales-Collazo O; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Seo S; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Brennecke JF; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Schneider WF; Department of Chemical and Biomolecular Engineering, University of Notre Dame , Notre Dame, Indiana 46556, United States.
J Phys Chem B ; 120(8): 1509-17, 2016 Mar 03.
Article en En | MEDLINE | ID: mdl-26556283
ABSTRACT
We synthesized ionic liquids (ILs) comprising an alkylphosphonium cation paired with phenolate, 4-nitrophenolate, and 4-methoxyphenolate anions that span a wide range of predicted reaction enthalpies with CO2. Each phenolate-based IL was characterized by spectroscopic techniques, and their physical properties (viscosity, conductivity, and CO2 solubility) were determined. We use the computational quantum chemical approach paired with experimental results to reveal the reaction mechanism of CO2 with phenolate ILs. Model chemistry shows that the oxygen atom of phenolate associates strongly with phosphonium cations and is able to deprotonate the cation to form an ylide with an affordable activation barrier. The ATR-FTIR and (31)P NMR spectra indicate that the phosphonium ylide formation and its reaction with CO2 are predominantly responsible for the observed CO2 uptake rather than direct anion-CO2 interaction.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos