Your browser doesn't support javascript.
loading
Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David.
Afiliación
  • Fischer NM; Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.
  • van Maaren PJ; Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.
  • Ditz JC; Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.
  • Yildirim A; Department of Physics, Faculty of Science and Art, Siirt University , 56100 Siirt, Turkey.
  • van der Spoel D; Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.
J Chem Theory Comput ; 11(7): 2938-44, 2015 Jul 14.
Article en En | MEDLINE | ID: mdl-26575731
ABSTRACT
In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http//virtualchemistry.org, aimed at facilitating sharing and reuse of input files for molecular simulations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Simulación por Computador / Modelos Moleculares Idioma: En Revista: J Chem Theory Comput Año: 2015 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Orgánicos / Simulación por Computador / Modelos Moleculares Idioma: En Revista: J Chem Theory Comput Año: 2015 Tipo del documento: Article País de afiliación: Suecia