Mechanosensitive components of integrin adhesions: Role of vinculin.
Exp Cell Res
; 343(1): 21-27, 2016 04 10.
Article
en En
| MEDLINE
| ID: mdl-26607713
External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell-matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Integrinas
/
Adhesión Celular
/
Vinculina
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Exp Cell Res
Año:
2016
Tipo del documento:
Article
Pais de publicación:
Estados Unidos