Your browser doesn't support javascript.
loading
Continuous event monitoring via a Bayesian predictive approach.
Di, Jianing; Wang, Daniel; Brashear, H Robert; Dragalin, Vladimir; Krams, Michael.
Afiliación
  • Di J; Janssen Research and Development, LLC, USA.
  • Wang D; Janssen Research and Development, LLC, USA.
  • Brashear HR; Janssen Research and Development, LLC, USA.
  • Dragalin V; Janssen Research and Development, LLC, USA.
  • Krams M; Janssen Research and Development, LLC, USA.
Pharm Stat ; 15(2): 109-22, 2016.
Article en En | MEDLINE | ID: mdl-26643012
In clinical trials, continuous monitoring of event incidence rate plays a critical role in making timely decisions affecting trial outcome. For example, continuous monitoring of adverse events protects the safety of trial participants, while continuous monitoring of efficacy events helps identify early signals of efficacy or futility. Because the endpoint of interest is often the event incidence associated with a given length of treatment duration (e.g., incidence proportion of an adverse event with 2 years of dosing), assessing the event proportion before reaching the intended treatment duration becomes challenging, especially when the event onset profile evolves over time with accumulated exposure. In particular, in the earlier part of the study, ignoring censored subjects may result in significant bias in estimating the cumulative event incidence rate. Such a problem is addressed using a predictive approach in the Bayesian framework. In the proposed approach, experts' prior knowledge about both the frequency and timing of the event occurrence is combined with observed data. More specifically, during any interim look, each event-free subject will be counted with a probability that is derived using prior knowledge. The proposed approach is particularly useful in early stage studies for signal detection based on limited information. But it can also be used as a tool for safety monitoring (e.g., data monitoring committee) during later stage trials. Application of the approach is illustrated using a case study where the incidence rate of an adverse event is continuously monitored during an Alzheimer's disease clinical trial. The performance of the proposed approach is also assessed and compared with other Bayesian and frequentist methods via simulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Teorema de Bayes / Monitoreo de Drogas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Pharm Stat Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Estadísticos / Teorema de Bayes / Monitoreo de Drogas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Pharm Stat Asunto de la revista: FARMACOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido