Your browser doesn't support javascript.
loading
Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells.
Lee, Jienny; Byeon, Jeong Su; Lee, Keum Sil; Gu, Na-Yeon; Lee, Gyeong Been; Kim, Hee-Ryang; Cho, In-Soo; Cha, Sang-Ho.
Afiliación
  • Lee J; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Byeon JS; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Lee KS; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Gu NY; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Lee GB; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Kim HR; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Cho IS; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea.
  • Cha SH; Animal Stem Cells Laboratory, Viral Disease Division, Animal and Plant Quarantine Agency, 175 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, 14089, Republic of Korea. virusmania@korea.kr.
Vet Res Commun ; 40(1): 1-10, 2016 Mar.
Article en En | MEDLINE | ID: mdl-26661466
ABSTRACT
Mesenchymal stem cells (MSCs) have the ability to differentiate into multi-lineage cells, which confers great promise for use in regenerative medicine. In this study, canine adipose MSCs (cAD-MSCs) were isolated from canine adipose tissue. These cells clearly represented stemness (Oct4, Sox2, and Nanog) and differentiation potential into the mesoderm (adipocytes, chondrocytes, and osteoblasts) at early passages. The aim of this study was to evaluate the effects of hypoxia on the differentiation potential into mesoderm, and the expression of anti-apoptotic genes associated with cell survival for the optimal culturing of MSCs. We observed that the proliferation of the cAD-MSCs meaningfully increased when cultured under hypoxic condition than in normoxic condition, during 7 consecutive passages. Also, we found that hypoxia strongly expressed anti-senescence related genes such as HDAC1 (histone deacetylase 1), DNMT1 (DNA (cytosine-5)-methyltransferase 1), Bcl-2 (inhibitor of apoptosis), TERT (telomerase reverse transcriptase), LDHA (lactate dehydrogenase A), SLC2A1 (glucose transporter), and DKC1 (telomere holoenzyme complex) and differentiation potential of cAD-MSCs into chondrocytes, than seen under the normoxic culture conditions. We also examined the multipotency of hypoxic conditioned MSCs using quantitative real-time RT-PCR. We found that the expression levels of stemness genes such as Oct-4, Nanog, and Sox-2 were increased in hypoxic condition when compared to the normoxic condition. Collectively, these results suggest that hypoxic conditions have the ability to induce proliferation of MSCs and augment their chondrogenic potential. This study suggests that cell proliferation of cAD-MSC under hypoxia could be beneficial, when considering these cells for cell therapies of canine bone diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipoxia de la Célula / Diferenciación Celular / Tejido Adiposo / Células Madre Mesenquimatosas Límite: Animals Idioma: En Revista: Vet Res Commun Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hipoxia de la Célula / Diferenciación Celular / Tejido Adiposo / Células Madre Mesenquimatosas Límite: Animals Idioma: En Revista: Vet Res Commun Año: 2016 Tipo del documento: Article