Your browser doesn't support javascript.
loading
Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations.
Rodriguez-Flores, Juan L; Fakhro, Khalid; Agosto-Perez, Francisco; Ramstetter, Monica D; Arbiza, Leonardo; Vincent, Thomas L; Robay, Amal; Malek, Joel A; Suhre, Karsten; Chouchane, Lotfi; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Abi Khalil, Charbel; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Keinan, Alon; Clark, Andrew G; Crystal, Ronald G; Mezey, Jason G.
Afiliación
  • Rodriguez-Flores JL; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA;
  • Fakhro K; Sidra Medical and Research Center, Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Agosto-Perez F; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
  • Ramstetter MD; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
  • Arbiza L; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
  • Vincent TL; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA;
  • Robay A; Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Malek JA; Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Suhre K; Bioinformatics Core, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Chouchane L; Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Badii R; Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar;
  • Al-Nabet Al-Marri A; Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar;
  • Abi Khalil C; Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar;
  • Zirie M; Department of Medicine, Hamad Medical Corporation, Doha, Qatar.
  • Jayyousi A; Department of Medicine, Hamad Medical Corporation, Doha, Qatar.
  • Salit J; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA;
  • Keinan A; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
  • Clark AG; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
  • Crystal RG; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA;
  • Mezey JG; Department of Genetic Medicine, Weill Cornell Medical College, New York, New York 10065, USA; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14850, USA;
Genome Res ; 26(2): 151-62, 2016 Feb.
Article en En | MEDLINE | ID: mdl-26728717
ABSTRACT
An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Árabes / Población Negra / Población Blanca / Hombre de Neandertal / Migración Humana Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Árabes / Población Negra / Población Blanca / Hombre de Neandertal / Migración Humana Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Animals / Humans País/Región como asunto: Asia Idioma: En Revista: Genome Res Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA Año: 2016 Tipo del documento: Article
...