Your browser doesn't support javascript.
loading
Novel Quantum Criticality in Two Dimensional Topological Phase transitions.
Cho, Gil Young; Moon, Eun-Gook.
Afiliación
  • Cho GY; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
  • Moon EG; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
Sci Rep ; 6: 19198, 2016 Jan 21.
Article en En | MEDLINE | ID: mdl-26791803
ABSTRACT
Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article