Your browser doesn't support javascript.
loading
Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
Yoneda, Aki; Henson, William R; Goldner, Nicholas K; Park, Kun Joo; Forsberg, Kevin J; Kim, Soo Ji; Pesesky, Mitchell W; Foston, Marcus; Dantas, Gautam; Moon, Tae Seok.
Afiliación
  • Yoneda A; Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA Center for Genome Sciences & Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
  • Henson WR; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Goldner NK; Center for Genome Sciences & Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
  • Park KJ; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Forsberg KJ; Center for Genome Sciences & Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
  • Kim SJ; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Pesesky MW; Center for Genome Sciences & Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA.
  • Foston M; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Dantas G; Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA Center for Genome Sciences & Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA Department of Biomedical Engineering, Washington
  • Moon TS; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA tsmoon@wustl.edu.
Nucleic Acids Res ; 44(5): 2240-54, 2016 Mar 18.
Article en En | MEDLINE | ID: mdl-26837573
ABSTRACT
Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenoles / Proteínas Bacterianas / Rhodococcus / Adaptación Fisiológica / Proteínas Portadoras / Regulación Bacteriana de la Expresión Génica Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenoles / Proteínas Bacterianas / Rhodococcus / Adaptación Fisiológica / Proteínas Portadoras / Regulación Bacteriana de la Expresión Génica Idioma: En Revista: Nucleic Acids Res Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos