Your browser doesn't support javascript.
loading
Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.
Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li.
Afiliación
  • Chien YY; Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
  • Yuan H; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
  • Wang CR; Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
  • Lee WL; Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
Sci Rep ; 6: 20402, 2016 Feb 08.
Article en En | MEDLINE | ID: mdl-26852799
ABSTRACT
The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2016 Tipo del documento: Article País de afiliación: Taiwán